
Apiary: Distributed Programming and Lifecycle Management for eBPF
Pragna Mamidipaka, Theophilus A. Benson

Carnegie Mellon University

Brief on eBPF eBPF in practice

The mismatch and why it exists Key insight

Apiary
Why it’s a superpower for the kernel Powerful, but fragile

Per-program tooling vs multi-hookpoint functionality

Distributed systems abstractions for eBPF

 Safe, flexible way to run
code inside the Linux
kernel.

 Used in networking,
observability, and
security.

 Customize and extend
the kernel without
rebuilds. 1Source - https://blog.pocok.dev/articles/ebpf-guide 2

3 5 6

4 7

Development challenges

The good

The bad

The ugly
Hyperscalers run tens to hundreds of
eBPF programs per server – Huge
performance wins!

Complex functionality spans multiple
kernel hook points – so solutions are
inherently distributed.

A. Writing and
maintaining eBPF
programs is now
extremely challenging.

B. Incidents and
regressions routinely
occur as programs
grow.

You need
centralized control

Teams ship overlapping
programs that could
interfere with each other
Program wise updates
can create version skew
across the pipeline
Centralized coordination
maintains accurate
cross-hookpoint state.

State and program logic
already separated via maps,
allowing central visibility and
control.

Lift coordination, consistency,
conflict resolution to a
runtime so that developer
solely focuses on eBPF logic.

 Modern eBPF applications have outgrown
per-program infrastructure. Use cases span
multiple hookpoints and need holistic
coordination

 Language and verifier constraints
Programs must be small, and cross-program
interactions are not validated.

 Reassembly of state is ad-hoc
Classification, state sharing, and ordering
must be rebuilt manually in each program,
making shared context across programs very
brittle.

Decoupled development from runtime issues!

 Scenario For TCP connect tracing, developers duplicate
classifier and track using custom logic. Apiary makes it a
bundle : classifier defines a conn which enforcers reuse.

 Update : sidecars route all packets of a flow to the same
version.

 Ops : Declare invariants (ordering/coverage), Apiary
fuzzes permutations to flag conflicts before production.

(a) Distributed coordination (b) Conflict resolution (c) Consistent updates
Grey and white boxes are distributed eBPF programs from different teams. The
black boxes are the classifier component which is redundantly replicated
across eBPF programs.

 Bundle: Classifier + enforcer actors.
 Apiary APIs: Simple primitives for coordination.
 Compiler: Translates bundle specs into eBPF

programs, maps, and metadata.
 Local Agent: deploys sidecars.

 Coordination, consistency, ordering: Enforced by
sidecars.

 Conflict detection: Declarative specs + fuzzing explore
unsafe interactions.

 Performance optimization: Compiler picks best
kernel-local IPC; supports program merging, migration.

Components

Properties

It’s possible to get it
in eBPF

Correct and Efficient by design!

