Carnegie
Mellon
University

) ENGINEERNG

sigcofftfht

COIMBRA

Apiary: Distributed Programming and Lifecycle Management for eBPF
Pragna Mamidipaka, Theophilus A. Benson .”W“ﬁ‘g?wmmgmme“

Carnegie Mellon University

Brief on eBPF eBPF in practice o0 [I Apiary

Why it’s a superpower for the kernel

v Safe, flexible way to run
code inside the Linux
kernel.

v’ Used in networking,
observability, and

e security.

' | v Customize and extend
the kernel without
rebuilds.

clang

User space
Kernel space

Source - https://blog.pocok.dev/articles/ebpf-guide

The mismatch and why it exists

Per-program tooling vs multi-hookpoint functionality

Modern eBPF applications have outgrown
per-program infrastructure. Use cases span
multiple hookpoints and need holistic
coordination

Language and verifier constraints

Programs must be small, and cross-program
interactions are not validated.

Reassembly of state is ad-hoc
Classification, state sharing, and ordering
must be rebuilt manually in each program,
making shared context across programs very
brittle.

)

Development challenges

(a) Distributed coordination (b) Conflict resolution (c)Consistentupdates xpp - :"' \
Grey and white boxes are distributed eBPF programs from different teams. The
black boxes are the classifier component which is redundantly replicated

across eBPF programs.

Powerful, but fragile

The good

Hyperscalers run tens to hundreds of
eBPF programs per server — Huge

performance wins!

The ugly

A. Writing and
maintaining eBPF
programs is now

The bad

Complex functionality spans multiple
kernel hook points - so solutions are

inherently distributed.

extremely challenging.

. Incidents and
regressions routinely
occur as programs
grow.

Key insight

You need
centralized control

Teams ship overlapping
programs that could
interfere with each other
Program wise updates
can create version skew
across the pipeline
Centralized coordination
maintains accurate
cross-hookpoint state.

'
i
i
1}
1
i
L

(a2}
TC

It’s possible to get it
in eBPF

State and program logic
already separated via maps,
allowing central visibility and
control.

Lift coordination, consistency,
conflict resolution to a
runtime so that developer
solely focuses on eBPF logic.

Distributed systems abstractions for eBPF

Components

= Bundle: Classifier + enforcer actors.

= Apiary APIs: Simple primitives for coordination.

= Compiler: Translates bundle specs into eBPF
programs, maps, and metadata.

= Local Agent: deploys sidecars.

Decoupled development from runtime issues!

Properties

v' Coordination, consistency, ordering: Enforced by
sidecars.

v' Conflict detection: Declarative specs + fuzzing explore
unsafe interactions.

v" Performance optimization: Compiler picks best
kernel-local IPC; supports program merging, migration.

Correct and Efficient by design!

Programming Model (4.1)

Runtime System (4.2)
L |

L

9 Declarative

@ specification

_"“n T e

Kernel eBPF Fuzz-based }
Version | | Profile Conflict D user | kernel
Server

£ BPFMap

I
Monolith

Local Agent

mm Sidecar

> Scenario For TCP connect tracing, developers duplicate
classifier and track using custom logic. Apiary makesita
bundle : classifier defines a conn which enforcers reuse.

> Update : sidecars route all packets of a flow to the same
version.

» Ops : Declare invariants (ordering/coverage), Apiary
fuzzes permutations to flag conflicts before production:

